Приложение 1.Ткани растений и животных

Для клеток многоклеточных организмов характерна специализация и объединение, в результате которых они образуют структуры, получившие названия тканей, из которых формируются органы. Системы клеток, структурно и функционально сходные друг с другом и обычно имеющие общее положение, получили название тканей. Существуют различные классификации тканей. Все они достаточно условны и используются по преимуществу для удобства обзора и с целью облегчения обучения.

Чаще растительные ткани делят на несколько групп в зависимости от основной функции: 1)образовательные, или меристемы; 2)покровные; 3)основные; 4)механические; 5)проводящие; 6)секреторные, или выделительные.


ОБРАЗОВАТЕЛЬНЫЕ ТКАНИ. Меристемы или образовательные ткани, обладают способностью к активному росту за счет деления и образования новых клеток. Меристемы формируют все прочие ткани и определяют длительный рост растений. Существует два основных типа меристем - апикальные или верхушечные, и латеральные, или боковые. Апикальные меристемы располагаются на верхушках побегов и корней, обеспечивая нарастание их в длину. Такой рост получил название первичного, а сами меристемы - первичных. При этом часть растения, образованная первичными тканями, возникшими из первичных меристем - это его первичное тело.

К первичным меристемам помимо апикальных относят и их непосредственные производные. У этих производных способность к делению в определенной степени сохранена - протодерма, прокамбий и основная меристема. В первичном теле растения они дают еще в ходе эмбриогенеза три первичные системы тканей - покровную (из протодермы), проводящую (из прокамбия) и систему основных тканей (из основной меристемы).

Латеральные меристемы располагаются параллельно боковым поверхностям осевых органов, нередко образуя цилиндры, на поперечных срезах имеющие вид колец. Главнейшие латеральные меристемы - камбий и феллоген. Эти меристемы обеспечивают нарастание стволов в толщину, образуя вторичные ткани и формируя вторичное тело растения. Камбий дает начало вторичным проводящим тканям - вторичным ксилеме и флоэме, а феллоген - главным образом пробке. Помимо апикальных и латеральных меристем иногда встречаются меристемы еще двух типов. Интеркалярные, или вставочные, меристемы чаще всего первичны и сохраняются в виде отдельных участков в зонах активного роста, например у оснований междоузлий, и в основаниях черешков листьев злаков. Существуют также раневые меристемы. Они образуются в местах повреждения тканей и органов и дают начало каллусу - особой ткани, состоящей из однородных паренхимных клеток, прикрывающих место поражения.

Клетки апикальных меристем более или менее изодиаметричны по размерам и многогранны по форме. Межклетников между ними нет, оболочки тонкие, содержащие мало целлюлозы. Полость клетки заполнена густой цитоплазмой с относительно крупным ядром, занимающим центральное положение. Вакуоли многочисленные, мелкие, но под световым микроскопом обычно не заметны. Эргастические вещества, как правило, отсутствуют. Пластид и митохондрий мало, и они мелкие.

Клетки боковых меристем различны по величине и форме. Они примерно соответствуют клеткам тех постоянных тканей, которые из них в дальнейшем возникают. Так, в камбии встречаются как паренхимные, так и прозенхимные инициали. Из паренхимных инициалей образуются паренхимы проводящих тканей, а из прозенхимных - проводящие элементы.

ПОКРОВНЫЕ ТКАНИ. Покровные ткани располагаются на границе с внешней средой. Большинство из них состоит из плотно сомкнутых живых, реже мертвых клеток. Они выполняют барьерную роль, защищая внутренние ткани от высыхания и повреждения. Одна из функций покровных тканей - регуляция газообмена и транспирации. Некоторые из них способны к всасыванию и выделению, активно регулируя скорость и избирательность проникновения веществ. Покровные ткани - барьер для проникновения патогенных микроорганизмов. Это очень древнее образование, возникшее в момент выхода растений из водной среды на сушу. Подобно прочим постоянным тканям, покровные ткани возникают в процессе онтогенеза из меристем. Принято различать первичные покровные ткани, образующиеся в результате дифференциации клеток первичных меристем, эпидерму и эпиблему. Вторичная покровная ткань - перидерма - образуется из вторичной меристемы - феллогена.

Покровные ткани первичного тела растений. I. Эпидерма. Листья и молодые зеленые побеги, как чехлом, покрыты однослойной первичной покровной тканью - эпидермой. Изредка эпидерма многослойна. Эпидерма возникает из первичной меристемы - протодермы. Это сложная ткань, поскольку ее клетки различаются по форме и отчасти по функциям. В частности, резко отличаются клетки, образующие устьица, и клетки трихом. Наружная поверхность клеток эпидермы часто покрыта слоем кутикулы или, реже, восковым налетом различной толщины. Кутикула может достигать значительной толщины, особенно у растений засушливых мест обитания. Нередко ее поверхность покрыта различного рода складками или бородавчатыми выростами. Исключая устьичные щели, клетки эпидермы плотно сомкнуты, т.е. отсутствуют межклетники. Главная функция эпидермы - регуляция газообмена и транспирации, т. е. испарения воды растением. Газообмен и транспирация осуществляются преимущественно через устьица, но частично и через кутикулу. Кроме того, через поры и тяжи пектиновых веществ в наружных стенках клеточных оболочек эпидермы проникают вода и неорганические питательные вещества, что особенно характерно для водных растений. Иногда эпидерма выполняет необычные для этой ткани функции - такие, как фотосинтез (у части водных растений), запасание воды (у некоторых пустынных растений) или секрецию веществ вторичного метаболизма (ряд эфирномасличных).

Характер клеток эпидермы различен, большинство, получившее название основных клеток эпидермы, отличается разнообразием очертаний. Боковые стенки, как правило, извилисты, что повышает плотность их сцепления друг с другом, реже прямые. Эпидермальные клетки осевых органов и листьев многих однодольных сильно вытянуты вдоль оси органа. В основных клетках эпидермы обнаруживается тонкий постенный слой протопласта с мелкими редкими лейкопластами и ядром.

Часто всю полость эпидермальной клетки занимает одна крупная вакуоль. Клеточный сок ее бесцветен, но иногда, особенно в эпидерме цветков и плодов, он окрашен. Стенки эпидермальных клеток утолщены неравномерно. Обычно наиболее утолщена наружная стенка, а боковые и внутренние - тонкие. Иногда в клетках эпидермы встречаются кристаллы, клетки многих злаков пропитаны кремнеземом. Клетки эпидермы многих семян содержат полисахариды в виде слизи, которая при увлажнении набухает. Семена при этом легко приклеиваются к движущимся предметам и таким образом распространяются.

У некоторых растений под эпидермой расположена особая ткань - гиподерма. Она отчасти выполняет механическую функцию, отчасти предохраняют растение от избыточного испарения.

Устьица представляют собой высокоспециализированные образования эпидермы, состоящие из двух замыкающих клеток, между которыми имеется своеобразный межклетник, или устьичная щель.

Число и распределение устьиц на листе или побеге варьируют в зависимости от вида растений и условий жизни. Число их обычно колеблется от нескольких десятков до нескольких сотен на 1 мм2 поверхности.

Механизм движения замыкающих клеток весьма сложен и неодинаков у разных видов. У большинства растений при недостаточном водоснабжении в ночные часы, а иногда и днем тургор в замыкающих клетках понижается и щель замыкается, снижая тем самым уровень транспирации. С повышением тургора устьица открываются. Считают, что главная роль в этих изменениях принадлежит ионам калия. Существенное значение в регуляции тургора имеет присутствие в замыкающих клетках хлоропластов. Первичный крахмал хлоропластов, превращаясь в сахар, повышает концентрацию клеточного сока. Это способствует притоку воды из соседних клеток и переходу замыкающих клеток в упругое состояние.

Общая площадь устьичных отверстий составляет лишь 1-2% площади листа. Несмотря на это, транспирация при открытых устьичных щелях достигает 50-70% испарения, равного по площади открытой водной поверхности.

Трихомы у растений - это различные по форме, строению и функциям выросты клеток эпидермы - волоски, чешуйки, железки, нектарники. Размеры трихом варьируют в значительных пределах. Наиболее длинные трихомы (до 5-6 см) покрывают семена хлопчатника. Трихомы могут быть живыми и отмершими и выполнять различные функции. Они делятся на кроющие и железистые. Кроющие - это одноклеточные, многоклеточные, ветвистые и звездчатые волоски. Железистые трихомы (железки и нектарники) являются элементами секреторных тканей. Разнообразие кроющих трихом довольно велико. Их строение и форму иногда используют в систематике. Кроющие волоски образуют на растении различной густоты опущение, предохраняющее от избыточной транспирации или изредка, напротив, ускоряющее ее. На листьях они чаще возникают с той стороны, где имеются устьица. Обильное опушение многих пустынных растений способствует отражению мощной солнечной радиации. Многие эпифиты тропиков используют трихомы для поглощения воды и минеральных солей.

Помимо волосков на эпидерме ряда видов заметны выросты, называемые эмергенцами. К ним относятся известные жгучие волоски крапивы, шипы розы, малины, ежевики и др. Шипы на плодах многих зонтичных, дурмана, каштана также являются эмергенцами. В формировании эмергенцев принимают участие не только клетки эпидермы, но и слои клеток, лежащие под ней.

II. Эпиблема. Эпиблема, нередко называемая также ризодермой, - первичная однослойная покровная ткань корня. Она возникает из наружных клеток апикальной меристемы этого органа вблизи корневого чехлика и покрывает молодые корневые окончания. Эпиблема - одна из важнейших тканей растения, поскольку именно через нее происходит поглощение воды и минеральных солей из почвы.

В зоне всасывания корня эпиблема пассивно или активно поглощает элементы минерального питания, затрачивая в последнем случае энергию. В связи с этим эпиблема богата митохондриями. Она недолговечна и, отмирая, передает свои функции новым участкам эпиблемы растущего корня. Особенности клеток эпиблемы соответствуют основной функции ткани. Они тонкостенны, лишены кутикулы и имеют более вязкую цитоплазму. В ней отсутствуют устьица. Каждая клетка эпиблемы потенциально способна к образованию корневого волоска, но чаще корневые волоски формируются лишь из части клеток, получивших специальное название трихобластов. Корневые волоски обычно одноклеточные, развиваются в результате выпячивания наружной стенки трихобласта и достигают в длину 1-2 мм. Обычно они существуют в течение нескольких дней, а затем отмирают.

Покровные ткани вторичного тела растения. Перидерма. Перидерма- сложная, многослойная вторичная покровная ткань стеблей и корней многолетних (реже однолетних) растений. Перидерма сменяет первичные покровные ткани осевых органов, которые постепенно отмирают и слущиваются. У большинства двудольных и голосеменных перидерма обычно появляется в течение первого вегетационного периода в тех частях корня и побега, которые прекратили рост в длину.

В основе перидермы лежит вторичная меристема - феллоген. Феллоген часто возникает из клеток основной паренхимы, лежащей под эпидермой и сохранившей слабую меристем этическую активность. В процессе формирования перидермы наружу откладываются клетки пробки, а внутрь - живые паренхимные клетки феллодермы. Пробка, феллоген и феллодерма образуют перидерму. По мере того как формируется перидерма, зеленый цвет побегов переходит в бурый. "Вызревшие" к осени побеги первого года, защищенные перидермой от высыхания, способны выдержать зимние морозы.

Пробка состоит из отмерших клеток, лишенных межклетников. Их оболочка пропитана суберином. Клетки пробки воздухо- и водонепроницаемые. Многослойная пробка образует защитный футляр, предохраняющий живые ткани от потери влаги, от резких температурных колебаний и проникновения болезнетворных микроорганизмов. На стволах и сучьях некоторых деревьев (пробковый дуб, бархат амурский) формируется мощный слой пробки, достигающий нескольких сантиметров толщины. Такую пробку используют для промышленного получения укупорочных материалов.

Живые ткани, лежащие под пробкой, нуждаются в газообмене и удалении избытка влаги. Поэтому в перидерме с самого начала образуются чечевички - отверстия, прикрытые рыхлой тканью из закругленных паренхимных слабоопробковевших клеток с многочисленными межклетниками. Через чечевички осуществляется "проветривание" стебля. Чечевички, имеющие вид небольших бугорков, хорошо заметны на поверхности молодых побегов деревьев и кустарников. Со временем клетки наружных перидерм и распологающихся между ними тканей отмирают, образуя мощный покровный комплекс - корку (ритидом).

ОСНОВНЫЕ ТКАНИ. Большую часть тела растения составляют относительно мало специализированные основные ткани. Они состоят обычно из живых паренхимных клеток, разнообразных по форме: округлых, эллиптических, цилиндрических и т. д. Цитоплазма этих клеток чаще расположена постенно. Клетки обычно живые тонкостенные, с простыми порами, но иногда их оболочки утолщаются и одревесневают. В первичном теле растения паренхима основных тканей формируется из основной меристемы, располагающейся глубже протодермы. Она обычно встречается в виде сплошных масс в коровой части стеблей и корней, сердцевине стеблей, мезофилле листьев и мякоти плодов. Что же касается вторичного тела, то клетки основной ткани здесь чаще "вкраплены" среди ксилемных или флоэмных элементов и являются малоспециализированными производными камбия или феллогена. На основе главной выполняемой функции помимо "классической" паренхимы различают несколько подгрупп основных тканей: ассимиляционную, запасающую, водоносную и воздухоносную. Кроме того, сюда же относят так называемые передаточные клетки.

Ассимиляционная ткань. В этой ткани осуществляется фотосинтез. Она состоит из более или менее тонкостенных живых паренхимных клеток, содержащих хлоропласты. Иногда такую ткань называют хлоренхимой. Чаще хлоропласты располагаются в по-стенном слое цитоплазмы и могут перемещаться как вследствие циклоза, так и в зависимости от особенностей освещения клетки.

Ассимиляционная ткань чаще всего залегает непосредственно под прозрачной эпидермой. Это облегчает циркуляцию газов через устьица. Основная масса хлоренхимы сосредоточена в листьях (рис. 1), меньшая часть - в молодых зеленых стеблях. Нередко в листьях и стеблях хлоренхима расположена очень рыхло, образуя крупные газоносные межклетники. В этом случае ассимиляционная функция совмещается с воздухоносной.

Запасающие ткани. В запасающих тканях откладываются избыточные в данный период развития растения продукты метаболизма: белки, углеводы, жиры и др. Обычно это паренхимные живые тонкостенные клетки, но иногда стенки клеток запасающих тканей утолщаются, и у них появляется дополнительная механическая функция.

Запасающие ткани широко распространены у растений и имеются в самых различных органах. У семенных растений это обычно эндосперм или зародыш семян. Многолетние растения, кроме того, накапливают запасные вещества в клубнях, луковицах, утолщенных корнях, сердцевине стеблей. Местом хранения резервных веществ может быть также паренхима проводящих тканей. Запасающая ткань может превращаться в хлоренхиму.

Водоносная ткань. Назначение этой ткани - запасание воды. Крупноклеточная тонкостенная водоносная паренхима имеется в стеблях и листьях растений-суккулентов (кактусы, агавы, алоэ) и растений засоленных местообитаний (солерос). Крупные водоносные клетки встречаются в листьях злаков. В вакуолях клеток водоносной паренхимы есть слизистые вещества, удерживающие влагу.

Воздухоносная ткань (аэренхима). Аэренхимой называют паренхиму со значительно развитыми межклетниками. Она хорошо развита в разных органах водных и болотных растений, но встречается и у сухопутных видов. Назначение аэренхимы - снабжение тканей кислородом или углекислым газом. У водных растений она служит также для обеспечения плавучести побегов и листьев.

Передаточные клетки характеризуются особыми впячиваниями клеточных стенок внутрь. Вероятно, эти клетки играют определенную роль в переносе растворенных веществ на короткие расстояния. Передаточные клетки связаны с ксилемой и флоэмой жилок семядолей и листьев многих травянистых двудольных, а также с ксилемой и флоэмой листовых следов в узлах двудольных и однодольных. Кроме того, их находят в различных тканях репродуктивных и железистых структур, где осуществляется интенсивный транспорт на короткие расстояния.

МЕХАНИЧЕСКИЕ ТКАНИ. Механические ткани - это опорные ткани, придающие прочность органам растений. Они обеспечивают сопротивление статическим (сила тяжести) и динамическим (порывы ветра и т. п.) нагрузкам. Этим объясняется расположение тканей в органах растений, их тип и особенности клеток. В самых молодых участках растущих органов механических тканей нет, так как живые клетки в состоянии высокого тургора обусловливают их форму благодаря своим упругим оболочкам. По мере развития органов в них появляются специализированные механические ткани. Сочетаясь с другими тканями, они образуют как бы арматуру органа, поэтому их иногда называют арматурными. Механические ткани наиболее развиты в осевой части побега - стебле. Здесь они располагаются по его периферии: либо отдельными участками в гранях, либо сплошным цилиндром. Тем самым достигается наилучшее использование механических свойств ткани при изгибе органа. Напротив, в корне, который выдерживает главным образом сопротивление на разрыв, механическая ткань сосредоточена в центре. Механические ткани могут формироваться как в первичном, так и во вторичном теле растения.

Наиболее заметная особенность клеток механических тканей - их значительно утолщенные оболочки, которые продолжают выполнять опорную функцию даже после отмирания их живого содержимого. Различают два основных типа механических тканей - колленхиму и склеренхиму.

Колленхима - это простая первичная опорная ткань, состоящая из более или менее вытянутых вдоль оси органа клеток с неравномерно утолщенными неодревесневшими первичными оболочками. В зависимости от характера утолщений стенок и соединения клеток между собой различают уголковую, пластинчатую и рыхлую колленхиму. В уголковой - на поперечном срезе утолщенные части оболочек соседних клеток зрительно сливаются между собой, образуя трех- и пятиугольники. В пластинчатой - клеточная оболочка утолщена равномерно. Рыхлая колленхима отличается от уголковой и пластинчатой наличием видимых межклетников.

Колленхима формируется из основной меристемы и обычно располагается непосредственно под эпидермой либо на расстоянии одного или нескольких слоев клеток от нее. В молодых стеблях она часто образует сплошной цилиндр по периферии. Иногда колленхима встречается в форме тяжей в выступающих ребрах стеблей травянистых и тех частей деревянистых растений, которые еще не вступили в стадию вторичного роста. Обычна колленхима в черешках и по обеим сторонам крупных жилок. Корни содержат колленхиму редко. Клетки колленхимы, будучи живыми с неодревесневшими стенками, способны к росту в длину и не препятствуют росту органов, в которых они расположены. Иногда колленхима содержит хлоропласты.

Функции арматурной ткани колленхима может выполнять только в состоянии тургора. Эволюционно колленхима возникла из паренхимы и близка к ней.

Склеренхимой называется механическая ткань, состоящая из клеток с одревесневшими и равномерно утолщенными оболочками. Склеренхимные клетки на определенном этапе дифференциации лишаются протопласта и выполняют опорную функцию, будучи мертвыми. Оболочки склеренхимных клеток обладают прочностью, близкой к прочности стали. Оболочки их толсты, а полость клетки мала и узка. Отложение лигнина повышает прочность склеренхимы. Лишь в редких случаях клетки склеренхимы не одревесневают (лубяные волокна льна). Поры в оболочках склеренхимы немногочисленные, простые.

По происхождению различают первичную и вторичную склеренхиму. Первичная склеренхима возникает из клеток основной меристемы, прокамбия или перицикла, вторичная - из клеток камбия.

Различают два основных типа склеренхимы - волокна и склереиды.

Волокна - сильно вытянутые прозенхимные клетки с заостренными концами, в исключительных случаях достигают нескольких десятков сантиметров длины (например у рами). Волокна, входящие в состав флоэмы (луба), носят название лубяных. Они нередко достигают значительной длины. Волокна ксилемы (древесины) называются древесинными или волокнами либриформа. Они короче лубяных, и их стенки всегда одревесневают. Эволюционно волокна либриформа образовались из трахеид. У многих растений, обычно у однодольных, волокна составляют механическую обкладку проводящих пучков.

В стеблях двудольных волокна часто располагаются на месте перицикла и в первичном флоэме. В стеблях и листьях однодольных они образуют субэпидермальные тяжи, а в корнях сосредоточены главным образом в центральной части.

Склереиды - структурные элементы механической ткани, обычно возникают из клеток основной паренхимы в результате утолщения и лигнификации их оболочек. Зрелые склереиды сильно варьируют по форме. Склереиды могут встречаться в виде скоплений либо располагаются поодиночке (клетки идиобласты}. Клетки типа склереид находятся в стеблях (хинное дерево), листьях (камелия), плодах (груша, твердый эндокарпий плодов грецкого ореха), семенах (многие бобовые). Считается, что функция склереид - противостоять сдавливанию.

ПРОВОДЯЩИЕ ТКАНИ. Проводящие ткани служат для передвижения по растению растворенных в воде питательных веществ. От корня к листьям движется восходящий, или транспирационный, ток водных растворов солей. Ассимиляционный, нисходящий, ток органических веществ направляется от листьев к корням. Восходящий ток осуществляется почти исключительно по трахеальным элементам ксилемы, а нисходящий - по ситовидным элементам флоэмы.

Сильно разветвленная сеть проводящих тканей несет водорастворимые вещества и продукты фотосинтеза ко всем органам растения, начиная от тончайших корневых окончаний до самых молодых побегов. Проводящие ткани объединяют все органы растения. Помимо дальнего, т. е. осевого, транспорта питательных веществ, по проводящим тканям осуществляется и ближний - радиальный транспорт.

Все проводящие ткани являются сложными, или комплексными, т. е. состоят из морфологически и функционально разнородных элементов. Формируясь из одной и той же меристемы, два типа проводящих тканей - ксилема и флоэма - располагаются рядом. Во многих органах растений ксилема объединена с флоэмой в виде тяжей, называемых проводящими пучками.

Существуют первичные и вторичные проводящие ткани. Первичные ткани закладываются в листьях, молодых побегах и корнях. Они дифференцируются из клеток прокамбия. Вторичные проводящие ткани, обычно более мощные, возникают из камбия.

Ксилема (древесина). По ксилеме от корня к листьям передвигаются вода и растворенные в ней минеральные вещества. Первичная и вторичная ксилемы содержат клетки одних и тех же типов. Однако первичная ксилема не имеет сердцевинных лучей, отличаясь этим от вторичной.

В состав ксилемы входят морфологически различные элементы, осуществляющие функции как проведения, так и хранения запасных веществ, а также чисто опорные функции. Дальний транспорт осуществляется по трахеальным элементам ксилемы: трахеидам и сосудам, ближний - по паренхимным элементам. Опорные, а иногда и запасающие функции выполняют часть трахеид и волокна механической ткани либриформа, также входящие в состав ксилемы.

Трахеиды в зрелом состоянии - это мертвые прозенхимные клетки, суженные на концах и лишенные протопласта. Длина трахеид в среднем составляет 1-4 мм, поперечник же не превышает десятых и даже сотых долей миллиметра. Стенки трахеид одревесневают, утолщаются и несут простые или окаймленные поры, через которые происходит фильтрация растворов. Большая часть окаймленных пор находится около окончаний клеток, т. е. там, где растворы просачиваются из одной трахеиды в другую. Трахеиды есть у спорофитов всех высших растений, а у большинства хвощевидных, плауновидных, папоротниковидных и голосеменных они являются единственными проводящими элементами ксилемы.

Сосуды - это полые трубки, состоящие из отдельных члеников, располагающихся друг над другом.

Между расположенными один над другим члениками одного и того же сосуда имеются разного типа сквозные отверстия - перфорации. Благодаря перфорациям вдоль всего сосуда свободно осуществляется ток жидкости. Эволюционно сосуды, по-видимому, произошли из трахеид путем разрушения замыкающих пленок пор и последующего их слияния в одну или несколько перфораций. Концы трахеид, первоначально сильно скошенные, заняли горизонтальное положение, а сами трахеиды стали короче и превратились в членики сосудов.

Сосуды появились независимо в разных линиях эволюции наземных растений. Однако наибольшего развития они достигают у покрытосеменных, где являются главнейшими водопроводящими элементами ксилемы. Возникновение сосудов - важное свидетельство эволюционного прогресса этого таксона, поскольку они существенно облегчают транспирационный ток вдоль тела растения.

Помимо первичной оболочки, сосуды и трахеиды в большинстве случаев имеют вторичные утолщения. В самых молодых трахеальных элементах вторичная оболочка может иметь форму колец, не связанных друг с другом (кольчатые трахеиды и сосуды). Позднее появляются трахеальные элементы со спиральными утолщениями. Затем следуют сосуды и трахеиды с утолщениями, которые могут быть охарактеризованы как спирали, витки которых связаны между собой (лестничные утолщения). В конечном итоге вторичная оболочка сливается в более или менее сплошной цилиндр, формирующийся внутрь от первичной оболочки. Этот цилиндр прерывается в отдельных участках порами. Сосуды и трахеиды с относительно небольшими округлыми участками первичной клеточной оболочки, не прикрытыми изнутри вторичной оболочкой, нередко называют пористыми. В тех случаях, когда поры во вторичной оболочке образуют подобие сетки или лестницы, говорят о сетчатых или лестничных трахеальных элементах (лестничные сосуды и трахеиды).

Вторичная, а иногда и первичная оболочка, как правило, лигнифицируются, т. е. пропитываются лигнином, это придает дополнительную прочность, но ограничивает возможности дальнейшего их роста в длину.

Трaхеальные элементы, т. е. трахеиды и сосуды, распределяются в ксилеме различным образом. Иногда на поперечном срезе они образуют хорошо выраженные кольца (кольцесосудистая древесина). В других случаях сосуды рассеяны более или менее равномерно по всей массе ксилемы (рассеяннососудистая древесина). Особенности распределения трахеальных элементов в ксилеме используют при определении древесин различных пород деревьев.

Помимо трахеальных элементов, ксилема включает лучевые элементы, т. е. клетки, образующие сердцевинные лучи, сформированные чаще всего тонкостенными паренхимными клетками (лучевая паренхима). Реже в лучах хвойных встречаются лучевые трахеиды. По сердцевинным лучам осуществляется ближний транспорт веществ в горизонтальном направлении. В ксилеме покрытосеменных помимо проводящих элементов содержатся также тонкостенные неодревесневшие живые паренхимные клетки, называемые древесинной паренхимой. По ним наряду с сердцевинными лучами отчасти осуществляется ближний транспорт. Кроме того, древесинная паренхима служит местом хранения запасных веществ. Элементы сердцевинных лучей и древесинной паренхимы, подобно трахеальным элемента, возникают из камбия.

Флоэма. Флоэма - сложная проводящая ткань, по которой осуществляется транспорт продуктов фотосинтеза от листьев к местам их использования или отложения (к конусам нарастания, подземным органам, зреющим семенам и плодам и т. д.).

Первичная флоэма дифференцируется из прокамбия, вторичная (луб) - производная камбия. В стеблях флоэма находится обычно снаружи от ксилемы, а в листьях она обращена к нижней стороне пластинки. Первичная и вторичная флоэмы, помимо различной мощности ситовидных элементов, отличаются тем, что у первой отсутствуют сердцевинные лучи.

В состав флоэмы входят ситовидные элементы, паренхимные клетки, элементы сердцевинных лучей и механические элементы. Большинство клеток нормально функционирующей флоэмы живые. Отмирает лишь часть механических элементов. Собственно проводящую функцию осуществляют ситовидные элементы. Различают два их типа: ситовидные клетки и ситовидные трубки. Терминальные стенки ситовидных элементов содержат многочисленные мелкие сквозные канальцы, собранные группами в так называемые ситовидные поля. У ситовидных клеток, вытянутых в длину и имеющих заостренные концы, ситовидные поля располагаются главным образом на боковых стенках. Ситовидные клетки - основной проводящий элемент флоэмы у всех групп высших растений, исключая покрытосеменные. Клеток-спутниц у ситовидных клеток нет.

Ситовидные трубки покрытосеменных более совершенны. Они состоят из отдельных клеток - члеников, располагающихся один над другим. Длина отдельных члеников ситовидных трубок колеблется в пределах 150-300 мкм. Поперечник ситовидных трубок составляет 20-30 мкм. Эволюционно их членики возникли из ситовидных клеток.

Ситовидные поля этих члеников находятся главным образом на их концах. Ситовидные поля двух расположенных один над другим члеников образуют ситовидную пластинку. Членики ситовидных трубок формируются из вытянутых клеток прокамбия или камбия. При этом материнская клетка меристемы делится в продольном направлении и производит две клетки. Одна из них превращается в членик, другая - в клетку-спутницу. Наблюдается и поперечное деление клетки-спутницы с последующим образованием двух-трех подобных клеток, расположенных продольно одна над другой рядом с члеником. Предполагается, что клетки-спутницы вместе с члениками ситовидных трубок составляют единую физиологическую систему и, возможно, способствуют продвижению тока ассимилянтов. При своем формировании членик имеет постенную цитоплазму, ядро и вакуоль. С началом функциональной деятельности он заметно вытягивается. На поперечных стенках появляется множество мелких отверстий-перфораций, образующих канальцы диаметром несколько микрометров, через которые из членика в членик проходят цитоплазматические тяжи. На стенках канальцев откладывается особый полисахарид - каллоза, сужающий их просвет, но не прерывающий цитоплазматические тяжи.

По мере развития членика ситовидной трубки в протопласте образуются слизевые тельца. Ядро и лейкопласты, как правило, растворяются, граница между цитоплазмой и вакуолью - тонопласт - исчезает и все живое содержимое сливается в единую массу. При этом цитоплазма теряет полупроницаемость и становится вполне проницаемой для растворов органических и неорганических веществ. Слизевые тельца также теряют очертания, сливаются, образуя слизевой тяж и скопления около ситовидных пластинок. На этом формирование членика ситовидной трубки завершается. Длительность функционирования ситовидных трубок невелика. У кустарников и деревьев она продолжается не более 3-4 лет. По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают. Отмершие ситовидные трубки обычно сплющиваются давящими на них соседними живыми клетками.

Паренхимные элементы флоэмы (лубяная паренхима) состоят из тонкостенных клеток. В них откладываются запасные питательные вещества и отчасти по ним осуществляется ближний транспорт ассимилянтов. У голосеменных клетки-спутницы отсутствуют и их роль выполняют прилегающие к ситовидным клеткам немногочисленные клетки лубяной паренхимы.

Сердцевинные лучи, продолжающиеся во вторичной флоэме, также состоят из тонкостенных паренхимных клеток. Они предназначены для осуществления ближнего транспорта ассимилянтов.

Проводящие пучки. Обособленные тяжи проводящей системы, состоящие чаще из ксилемы и флоэмы, называют проводящими пучками. Первоначально они возникают из прокамбия. Вокруг пучков нередко формируется обкладка из живых или мертвых паренхимных клеток. Они могут быть полными, т. е. состоящими из флоэмы и ксилемы, и неполными, состоящими только из ксилемы или флоэмы. В тех случаях, когда часть прокамбия сохраняется и превращается затем в камбий, а пучок способен к вторичному утолщению, говорят об открытых пучках. Они встречаются у большинства двудольных и голосеменных. В закрытых пучках однодольных прокамбий полностью дифференцируется в проводящие ткани.

В зависимости от взаимного расположения флоэмы и ксилемы различают пучки нескольких типов. Чаще всего флоэма лежит по одну сторону от ксилемы. Такие пучки называют коллатеральными (открытые и закрытые). У части двудольных растений (из семейств пасленовых, вьюнковых, тыквенных и т. д.) одна часть флоэмы располагается снаружи, а другая - с внутренней стороны ксилемы. Такой пучок называется биколлатеральным, а соответствующие участки флоэмы - наружной и внутренней флоэмой. Камбий находится между наружной флоэмой и ксилемой.

Встречаются также концентрические пучки, при этом либо флоэма окружает ксилему (центроксилемные пучки), либо, наоборот, ксилема окружает флоэму (центрофлоэмные). Центрофлоэмные пучки найдены в стеблях и корневищах ряда двудольных (ревень, щавель, бегония) и однодольных (многие лилейные, осоковые). Известны пучки промежуточные между закрытыми коллатеральными и центрофлоэмными. Центроксилемные пучки обычны для папоротников. В центре молодых корней голосеменных и покрытосеменных, имеющих первичное строение, располагается проводящий пучок, получивший название радиального. Ксилема в таком пучке расходится лучами от центра, а флоэма располагается между лучами. Возникают эти пучки из прокамбия. В корнях двудольных и голосеменных между ксилемой и флоэмой сохраняется слой прокамбиальных клеток, которые позднее дифференцируются в камбий. Встречаются однолучевые (монархные), двулучевые (диархные), трехлучевые (триархные), четырехлучевые (тетрархные), пятилучевые (пентархные) и многолучевые (полиархные) радиальные лучи. Последние обычны у однодольных.

В рамках классификации тканей, основанной на морфофункциональном принципе, у животных и человека различают 5 типов тканей, а именно: эпителиальную, соединительную, мышечную и нервную ткани, а также кровь и лимфу.

ЭПИТЭЛИАЛЬНАЯ ТКАНЬ, или эпителий, состоит из клеток, покрывающих поверхность тела, внутренние поверхности внутренних органов (желудок, мочевой пузырь и др.), поверхности серозных оболочек (брюшина, плевра, перикард), а также из клеток, образующих некоторые железы (слюнные железы, поджелудочная железа и др.). Поэтому различают покровный и железистый (секреторный) эпителий. Из эктодермы развивается эпителий кожи, из энтодермы - эпителий желудка, кишечника, легких и др., а из мезодермы - эпителий почек, серозных оболочек и других структур.

Среди покровных эпителиальных тканей различают плоский, кубический, призматический и ресничный эпителий.

Плоский эпителий представлен уплощенными клетками, которые образуют поверхностный слой кожи и выстилают ротовую полость, пищевод и влагалище. Как правило, плоский эпителий является многослойным, образует слизистые оболочки пищевода, влагалища, эпидермис кожи и др.

Кубический эпителий представлен кубовидными клетками, которые выстилают почечные канальцы, наружную поверхность яичника и другие органы.

Призматический эпителий представлен клетками цилиндрической формы, им выстлан желудок, кишечник, матка и другие органы.

Ресничный эпителий представлен клетками, на поверхности которых имеются реснички. Биение этих ресничек обуславливает перемещение слизи и других веществ по эпителиальному слою.

Железистый эпителий представлен клетками призматической или кубической формы, которые продуцируют секрет. Они функционируют либо как одноклеточные железы, секретируя разные секреты, либо формируют многоклеточные железы, получившие название эндокринных желез, т.к. они выделяют продукты своей деятельности (гормоны) в кровь и лимфу.

СОЕДИНИТЕЛЬНАЯ ТКАНЬ. Соединительная ткань-это главная опорная ткань организма. К ней относятся хрящ и кость, из которых состоит скелет, а кроме того, она связывает между собой другие ткани, например кожу с лежащими под ней тканями или пласты эпителия, образующие брыжейку. Соединительная ткань покрывает снаружи различные органы, отделяя их друг от друга, с тем чтобы каждый из них не нарушал функции другого, а также окружает кровеносные сосуды и нервы в местах их входа в тот или иной орган и выхода из него. Соединительная ткань - сложная структура, в состав которой входят разнообразные клетки, развивающиеся из мезенхимы, происходящей из мезодермы зародыша; волокна нескольких типов, представляющие собой неживые продукты клеток; жидкий или полужидкий аморфный матрикс, состоящий из гиалуроновой кислоты, хондроитина, хондроитинсульфата и кератинсульфата.

Составляющие соединительную ткань клетки обычно располагаются достаточно далеко друг от друга, а их метаболические потребности относительно невелики. В разных частях организма (например, в дерме кожи) имеются обширные сосудистые разветвления, но они, как правило, обеспечивают снабжение кислородом и питательными веществами не самой соединительной ткани, а других тканей, таких, как эпителий. Существует несколько типов соединительной ткани.

Рыхлая соединительная ткань. Эта ткань состоит из клеток, редко разбросанных в межклеточном веществе, и волокон, образующих рыхлое неупорядоченное переплетение.

Ареолярная соединительная ткань. Ареолярная ткань состоит из прозрачного полужидкого матрикса, содержащего смесь муцина, гиалуроновой кислоты и хондроитинсульфата. В ней имеются многочисленные волнистые пучки коллагеновых волокон и рыхлое анастомозирующее переплетение тонких прямых волокон эластина. Коллагеновые волокна гибкие, но не эластичные, тогда как волокна эластина гибкие и эластичные. Совместно эти волокна придают соединительной ткани значительную прочность и упругость. Она содержит также очень тонкие нитевидные ретикулиновые волокна, обволакивающие кровеносные сосуды и образующие соединительнотканную оболочку мышечных волокон. Полагают, что ретикулиновые волокна представляют собой незрелые коллагеновые волокна. По матриксу разбросаны клетки многих разных типов: макрофаги, фибробласты, тучные клетки, плазматические клетки, хроматофоры, жировые и мезенхимные клетки. Фибробласты- это клетки, продуцирующие волокна; они имеют уплощенную веретеновидную форму и содержат овальное ядро. Обычно они тесно прилегают к синтезируемым ими волокнам, но в случае повреждений способны мигрировать к поврежденным участкам ткани и секретировать там дополнительные волокна, с тем чтобы затянуть рану. Макрофаги (гистиоциты) - полиморфные клетки, способные к амебоидному движению и к поглощению бактерий и других чужеродных частиц. Обычно эти клетки неподвижны, но в случае необходимости они направляются к участкам, в которые проникли бактерии, обеспечивая таким образом защиту организма. Вместе с ретикулярными клетками лимфатической системы они образуют ретикулоэндотелиальную систему организма. Тучные клетки имеют овальную форму, мелкие и содержат зернистую цитоплазму. Эти клетки участвуют в образовании матрикса, а также секретируют гепарин и гистамин; в больших количествах они располагаются вблизи кровеносных сосудов. Гепарин-антикоагулянт, содержащийся во всех тканях млекопитающих. Он нейтрализует действие тромбина, препятствуя превращению протромбина в тромбин. Гистамин высвобождается в тканях при повреждении или нарушении их целостности. Он вызывает расширение сосудов, сокращение гладких мышц и стимулирует секрецию желудочного сока. Немногочисленные плазматические клетки образуются в результате митотического деления мигрирующих лимфоцитов. Плазматические клетки вырабатывают антитела, составляющие важный компонент иммунной системы организма. Хроматофоры имеются только в некоторых специализированных структурах в коже и глазу.

Ареолярная ткань окутывает все органы тела; она связывает кожу с лежащими под ней структурами и соединяет между собой пласты эпителия, образующие брыжейки. Кроме того, она покрывает кровеносные сосуды и нервы на входе в органы и выходе из них.

Плотная (компактная) волокнистая соединительная ткань. Эта ткань состоит главным образом из волокон, погруженных в матрикс, а не из клеток. Волокна располагаются беспорядочно или же ориентированы более или менее параллельно друг другу.

Белая волокнистая соединительная ткань. Это жесткая блестящая ткань с ясно выраженной структурой, состоящая из коллагеновых волокон, плотно упакованных в многочисленные пучки, расположенные параллельно друг другу. Между коллагеновыми волокнами и вдоль пучков располагаются ряды фибробластов. Соседние пучки соединены между собой ареолярной тканью. Волокнистая ткань прочная, гибкая, но не способна к растяжению, и ее прочность обусловлена наличием коллагена. Белая волокнистая ткань соержится в больших количествах в сухожилиях, некоторых связках, склере и роговице глаза, капсуле почки, надхрящнице и надкостнице.

Желтая эластичная соединительная ткань. Эта ткань образована рыхлым беспорядочным переплетением разветвленных желтых эластичных волокон. По всему основному веществу случайным образом разбросаны фибриобласты, а также некоторое количество тонких коллагеновых волокон. Эластичные волокна придают ткани эластичность и гибкость, а коллаген прочность. Эта ткань находится в связках, стенках артерий, в легких и связанных с ними воздухоносных путях, а также в шейных связках.

Жировая ткань. Эта ткань не имеет собственного основного вещества, и представляет собой в сущности ареолярную ткань, содержащую большие количества жировых клеток, собранных в дольки. Каждую клетку почти целиком заполняет центральная жировая капля, а ядро и цитоплазма оттеснены к периферии.

У млекопитающих жировая ткань содержится в дермальном слое кожи, в брыжейке, вокруг почек и сердца. Она служит энергетическим депо, предохраняет внутренние органы от ударов, способствует сохранению тепла в организме.

Скелетные ткани. Хрящ. Хрящ представляет собой соединительную ткань, состоящую из клеток, погруженных в упругое основное вещество (матрикс)-хондрин. Хондрин отлагается клетками, которые называются хондробластами, и содержит многочисленные тонкие волокна, состоящие главным образом из коллагена. В конечном счете хондробласты оказываются заключенными в полости, называемые лакунами. В этом состоянии их называют хондроцитами. Снаружи хрящ покрыт церихондрием, или надхрящницей -плотной оболочкой, состоящей из клеток и волокон. Здесь формируются новые хондробласты, непрерывно образующие основное вещество хряща.

Хрящ - это твердая, но гибкая ткань. Она очень хорошо приспособлена к тому, чтобы сопротивляться любым деформациям. Основное вещество хряща обладает упругостью и способностью демпфировать ударные нагрузки, часто возникающие между суставными поверхностями костей. Коллагеновые фибриллы сопротивляются любым растягивающим нагрузкам, воздействующим на ткань.

Известны три типа хряща; они различаются по органическим компонентам, содержащимся в их основном веществе.

Гиалиновый хрящ. Основное вещество полупрозрачное, состоит из хондроитинсульфата и часто содержит тонкие коллагеновые волокна. Периферические хондроциты уплощены, а расположенные в середине имеют угловатую форму. Хондроциты лежат в лакунах, в каждой из которых могут находиться один, два, четыре или восемь хондроцитов.

В отличие от остеоцитов у хондроцитов нет отростков, выступающих из лакун в основное вещество; нет здесь и кровеносных сосудов. Обмен веществ между хондроцитами и основным веществом происходит исключительно путем диффузии.

Гиалиновый хрящ - эластичная сжимаемая ткань, покрывающая суставные поверхности костей, образующая воздухоносные пути дыхательной системы и некоторые части уха. Из него состоит скелет хрящевых рыб и скелет зародышей позвоночных с костным скелетом.

Желтый эластический хрящ. Основное вещество полупрозрачное и содержит переплетение желтых эластических волокон. Они делают этот хрящ более эластичным и гибким, чем гиалиновый хрящ, и придают ему способность быстро восстанавливать прежнюю форму в случае ее нарушения. Эластический хрящ имеется в наружном ухе, евстахиевой трубе, надгортаннике и глотке.

Белый волокнистый хрящ. Этот хрящ образован из многочисленных пучков плотно упакованных белых коллагеновых волокон, погруженных в основное вещество. Он обладает большей прочностью, чем гиалиновый хрящ, но меньшей гибкостью. Белый волокнистый хрящ образует межпозвоночные диски, где играет роль амортизатора. Он находится также в области симфиза лобковых костей и в суставных сумках.

Кость. Кость-это основной материал, из которого построен скелет позвоночных животных; она несет опорные, метаболические и защитные функции. Кость-это обызвествленная соединительная ткань, состоящая из клеток, погруженных в твердое основное вещество. Примерно 30% основного вещества образовано органическими соединениями, преимущественно в форме коллагеновых волокон, а остальные 70%-неорганическими. Главный неорганический компонент кости представлен гидроксиапатитом Са10(РО4)6(ОН)2, но в ней содержатся также в различных количествах натрий, магний, калий, хлор, фтор, карбонаты и цитраты.

Костные клетки-остеобласты-находятся в лакунах, распределенных по всему основному веществу. Остеобласты откладывают неорганическое вещество кости. Лакуны соединяются между собой тонкими канальцами, содержащими цитоплазму; через эти канальцы проходят кровеносные сосуды, с помощью которых остеобласты обмениваются различными веществами.

Строение костей специально приспособлено к тому, чтобы выдерживать деформацию сжатия и сопротивляться растягивающим нагрузкам. При откладывании волокон кости они импрегнируются кристаллами апатита. Это придает кости максимальную прочность.

Благодаря процессам резорбции и реконструкции каждая отдельная кость приспосабливает свое строение к тому, чтобы соответствовать любому изменению механических воздействий, которым подвергается животное в процессе своего развития. Поступление кальция и фосфата в кровь по мере необходимости регулируется двумя гормонами-паратгормоном и кальцитонином.

Кроветворные ткани. Кровь является очень сложным образованием, составляющим у человека примерно 5-9% массы тела. В ее составе различают плазму и форменные элементы - эритроциты, лейкоциты и тромбоциты (кровяные пластинки).

Известны два типа кроветворной ткани миелоидная и лимфоидная. В миелоидной (костном мозге) образуются эритроциты и гранулоциты, а в лимфоидной - лимфоциты и моноциты. Они состоят из свободных клеток, лежащих в строме, образованной рыхлой ретикулярной соединительной тканью. Важнейшими функциями крови являются трофическая, дыхательная и транспортная.

Плазма крови состоит на 90-93% из воды, в которой содержатся белки, углеводы, жиры и минеральные вещества. Эритроциты, или красные кровяные тельца (шарики), представляют собой безъядерные овальные клетки, диаметр которых составляет 7,1-7,9 мкм. 1 мл крови мужчины содержит 3,9-5,5 х 10" эритроцитов, а 1 мл крови женщины - 3,7-4,9 х 10". Основной функцией эритроцитов является транспортировка кислорода и углекислоты.

Лейкоциты (белые кровяные клетки) подразделяют на гранулоциты и агранулоциты. В составе гранулоцитов на основе отношения их к красителям различают нейтрофилы, эозинофилы и базофилы. В составе агранулоцитов различают лимфоциты и моноциты. Лимфоцитов в крови довольно много (20-35%). Они очень полиморфны. Их размеры составляют 4,5-10 мкм. Поскольку для них характерно разное происхождение, то различают Т-лимфоциты, образование которых происходит в тимусе, и В-лимфоциты, образующиеся в красном костном мозге. Эти лимфоциты различаются и по функциям.

Моноциты являются клетками размером 18-22 мкм. Их доля среди лейкоцитов составляет 6-7%. Эти клетки постоянно мигрируют в соединительную ткань, где они дают начало макрофагам.

Лейкоциты выполняют защитную функцию (участвуют в формировании иммунитета).

Тромбоциты (красные кровяные пластинки) - это безъядерные тельца размером 2-3 мкм. Являясь составной частью тромбоксилазы, они принимают участие в свертывании крови.

Лимфа, подобно крови, также состоит из жидкой части и форменных элементов. Жидкой частью является лимфоплазма, а форменные элементы представлены в основном лимфоцитами. В лимфе встречаются также моноциты, но в небольшом количестве. Основная функция лимфы заключается в регулировании циркуляции лимфоцитов, а также оттока различных жидкостей и находящихся в ней метаболитов от органов.

МЫШЕЧНАЯ ТКАНЬ - образована мышечными клетками (миоцитами), являющимися структурно-функциональными единицами многоядерных мышечных волокон - миофибрилл. Эти волокна образуются в результате слияния миоцитов. Установлено, что слияние обеспечивается несколькими белками (кадгеринами, интегринами, меятринами). Различают гладкую, поперечно-полосатую и сердечную мышечную ткань, которые различаются между собой по строению миофибрилл. Гладкие мышцы построены из вытянутых сигароподобных клеток (миоцитов). Они формируют мышечные слои стенок сосудов, бронхов, желудка, кишечника и т. д. Поперечно-полосатая мышечная ткань представлена скелетной мышечной тканью. Скелетные мышцы прикрепляются к костям. Сердечная мышечная ткань представлена сократительными кардиомиоцитами. Сократительная способность мышц обеспечивается по той причине, что сократительные структуры (миофибриллы) содержат миозин и актин.

НЕРВНАЯ ТКАНЬ формируется из эктодермы и представлена нейронами (нейроцитами), которые являются клетками, проводящими электрические импульсы, и клетками нейроглии.

Нейрон состоит из тела, в котором содержится ядро, и отходящих от тела двух или более отростков. Те отростки, которые проводят нервные импульсы от тела нейрона к периферии, получили название аксонов, а те, которые проводят импульсы к телу нейрона, названы дендритами. Нейроглия представлена клетками, выстилающими полости головного и спинного мозга и образующими оболочки нейронов и их отростков, а также клетками, встречающимися на поверхности тела нейронов и нервных ганглиев, в нервных окончаниях. Нервными волокнами являются отростки нервных клеток и глиальные оболочки.

Нервная ткань составляет основной компонент нервной системы, главные функции которой заключаются в регуляции функционирования тканей и органов, а также координации связи организмов с окружающей средой.