Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «ГОРНО-АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» кафедра органической, биологической химии и МПХ

Молекулярная биология

Учебно-методический комплекс

Для студентов, обучающихся по специальности 050102 «Биология»

Горно-Алтайск РИО Горно-Алтайского госуниверситета 2009

Печатается по решению редакционно-издательского совета Горно-Алтайского университета

ББК 24.1

H 52

Молекулярная биология: учебно-методический комплекс (для студентов ОЗО, обучающихся по специальности «Биология»). – Горно-Алтайск: РИО ГАГУ, 2009. – 34 с.

Составитель: Ляшевская Н.В., к.х.н., доцент ГАГУ

Рецензенты:

Лещук Р.И., к.б.н., доцент Томского государственного университета Устюжанина Е.Н., к.п.н., доцент Горно-Алтайского государственного университета

В работе представлены учебно-методические материалы по дисциплине «Молекулярная биология», в том числе программа, тематический план лекций, методические указания студентам по самостоятельной работе, глоссарий, основная и дополнительная литература и вопросы, выносимые на семестровый зачет. Дисциплина «Молекулярная биология» является дисциплиной федерального компонента для студентов 5 курса специальности «Биология», квалификации учитель биологии.

СОДЕРЖАНИЕ

Квалификационная характеристика специалиста	4
Набор компетенций, которые формируются у студентов при	
изучении курса	4
Рабочая программа дисциплины:	
I. Организационно-методический раздел	6
II. Требования к обязательному минимуму содержания дис-	
циплины, определенные ГОС ВПО	6
III. Распределение часов курса по формам и видам работ	7
IV. Содержание учебного курса	8
V. Тематический план лекций	. 10
VI. Практикум	. 11
VII. Глоссарий	
VIII. Рекомендуемая литература	27
Методические указания по самостоятельной работе	
студентов	29
Вопросы для подготовки к зачету	
<u>*</u>	

Квалификационная характеристика специалиста

- осуществляет деятельность по изучению и охране живой природы;
- проводит работу по использованию биологических систем в хозяйственных и медицинских целях;
- разрабатывает нормативные документы в своей области деятельности;
 - организует и выполняет лабораторные исследования;
- анализирует получаемую лабораторную информацию, обобщает и систематизирует результаты выполненных работ;
- проводит экспериментальные исследования в своей области, формулирует их задачу, участвует в разработке и осуществлении новых методических подходов, обсуждении, оценке и публикации результатов;
- следит за соблюдением законодательства РФ, международных соглашений, выполнением норм и правил в области охраны природы;
- планирует мероприятия по охране природы и здоровья человека, предотвращению загрязнения и деградации природной среды.

Набор компетенций, которые формируются у студентов при изучении курса.

При успешном изучении курса «Молекулярная биология» выпускник должен обладать следующими компетенциями:

- следует этическим и правовым нормам в отношении других людей и в отношении природы (принципы биоэтики), имеет четкую ценностную ориентацию на сохранение природы и охрану прав и здоровья человека;
- приобретает новые знания и формирует суждения по научным, социальным и другим проблемам, используя современные образовательные и информационные технологии;
- проявляет экологическую грамотность и использует базовые знания в области биологии в жизненных ситуациях; понимает социальную значимость и умеет прогнозировать последст-

вия своей профессиональной деятельности, готов нести ответственность за свои решения;

- использует основные технические средства в профессиональной деятельности: работает на компьютере и в компьютерных сетях, использует универсальные пакеты прикладных компьютерных программ, создает базы данных на основе ресурсов Internet, способен работать с информацией в глобальных компьютерных сетях;
- способен использовать базовые знания и навыки управления информацией для решения исследовательских профессиональных задач, соблюдает основные требования информационной безопасности, в том числе защиты государственной тайны;
 - проявляет творческие качества;
 - заботится о качестве выполняемой работы;
 - умеет работать самостоятельно и в команде;
- демонстрирует знание принципов клеточной организации биологических объектов, биофизических и биохимических основ, мембранных процессов и молекулярных механизмов жизнедеятельности;
- применяет современные экспериментальные методы работы с биологическими объектами в полевых и лабораторных условиях, навыки работы с современной аппаратурой;
- демонстрирует базовые представления об основных закономерностях и современных достижениях генетики, о геномике, протеомике;
- демонстрирует современные представления об основах биотехнологии и генной инженерии, нанобиотехнологии, молекулярного моделирования;
- умеет вести дискуссию и преподавать (в установленном порядке) основы биологии и экологии.

Рабочая программа дисциплины

І. Организационно-методический раздел

Настоящая программа входит в число дисциплин учебного плана специальности 050102 — «Биология» и рассчитана на 100 часов, из которых на лекции отводится 8 часа, 4 часа на семинарские занятия и 88 часов на самостоятельную работу.

Курс «Молекулярная биология» является основой в подготовке студентов-биологов для восприятия ряда дисциплин биологического цикла. Предполагает дать студентам фундаментальные понятия о строении, свойствах и биологической роли соединений, обеспечивающих наследственность живого организма и тонкие механизмы передачи наследственной информации.

В курсе использован современный опыт в области воспитания у студентов культуры общения, межнациональных отношений в многонациональном обществе.

II. Требования к обязательному минимуму содержания дисциплины, определенные ГОС ВПО

Современные теоретические и практические задачи молекулярной биологии. Важнейшие достижения. Методы молекулярной биологии. Основы генетической инженерии: рестрикционный анализ, клонирование, гибридизация, определение нуклеотидных последовательностей ДНК и РНК, химический синтез генов. Создание искусственных генетических программ. Структура геномов про- и эукариот. Уникальные и повторяющиеся гены. Гомеозисные гены. Неядерные геномы. ДНК митохондрий и хлоропластов. Сателлитная ДНК. ДНК-содержащие вирусы и фаги. Банки нуклеотидных последовательностей, программа «Геном человека». Геномная дактилоскопия. Генетически детерминируемые болезни. Подвижные генетические элементы и эволюция геномов. Структура хроматина. Полиморфизм ДНК. Репликация различных ДНК и её регуляция. Теломерные после-

довательности ДНК. Повреждения и репарация ДНК. Структура транскриптонов и регуляция транскрипции у про- и эукариот. Процессинг РНК. Сплайсинг и его виды. Рибозимы. Обратная транскрипция. РНК-содержащие вирусы. Молекулярные основы канцерогенеза. Онкогены. Связь структуры и функции белков. Белковая инженерия. Внеклеточный синтез белков. Межмолекулярные взаимодействия и их роль в функционировании живых систем. Молекулярные основы эволюции, дифференцировки развития и старения. Молекулярные механизмы регуляции клеточного цикла. Программируемая клеточная гибель.

Таблица 1 III. Распределение часов курса по формам и видам работ

Темы модулей	Всего часов	Аудиторные занятия лек- семи- прак-		Само- стоя- тель- ная	
		ции	нар-	прак- тиче-	работа
		ции	ские	ские	puooru
			заня-	заня-	
			тия	тия	
CE	MECTP 9)	I.	U	1
1. Введение. Современные теорети-					
ческие и практические задачи моле-	6	1	_	-	5
кулярной биологии. Методы моле-					
кулярной биологии. Важнейшие					
достижения.					
2. Нуклеиновые кислоты. Определе-					
ние нуклеотидных последовательно-	45	3	2	-	40
стей ДНК и РНК. Структура геномов					
про- и эукариот. Неядерные ДНК.					
ДНК-содержащие вирусы и фаги.					
Уровни структурной организации ДНК. Полиморфизм ДНК. Структура					
хроматина. Программа «Геном чело-					
века», банки нуклеотидных последо-					
вательностей. Создание искусствен-					
ных генетических программ. Осно-					
вы генетической инженерии.					

3. Обмен нуклеиновых кислот. Репликация ДНК и её регуляция. Повреждение и репарация ДНК. Транскрипция — особенности у про- и зукариот. Структура транскриптонов. Процессинг и сплайсинг РНК на примере мРНК. Рибозимы. Экспрессия генов. Трансляция. РНК-содержащие вирусы. Молекулярные основы канцерогенеза. Белковая инженерия. Внеклеточный синтез белков. Молекулярные основы эволюции. Молекулярные механизмы регуляции клеточного цикла. Программируемая клеточная гибель (апоптоз).	49	4	2	-	43
Всего:	100	8	4		88
Итоговая форма контроля:	Зачет				

IV. Содержание учебного курса

Объяснительная записка

«Молекулярная биология» является одной из дисциплин в биологическом образовании и изучает строение соединений обеспечивающих наследственность живого организма и тонкие механизмы передачи наследственной информации.

Целью молекулярной биологии является раскрытие биохимических и биофизических основ организации живого организма, выяснение взаимосвязи между структурой и функциями биомолекул, участвующих в передаче наследственной информации.

Важнейшей задачей курса является ознакомление с логикой происходящих в живых клетках процессов, их регуляцией и ролью белков и нуклеиновых кислот в них.

Курс «Молекулярная биология» призван дать понимание того, каков конкретный молекулярный механизм происходящих в

организмах физиологических процессов и каким образом можно направить эти процессы в клетках микроорганизмов, растений и животных, чтобы они могли быть успешно использованы для нужд современной биотехнологии.

Ввеление

Современные теоретические и практические задачи молекулярной биологии. Важнейшие достижения. Методы молекулярной биологии

1. Нуклеиновые кислоты

Нуклеотидный состав ДНК и РНК. Определение нуклеотидной последовательности ДНК и РНК. Химический синтез генов. Основы генетической инженерии: рестрикционный анализ, клонирование, гибридизация. Создание искусственных генетических программ. Структура геномов про- и эукариот. Уникальные и повторяющиеся гены. Гомеозисные гены. Неядерные геномы. ДНК митохондрий и хлоропластов. Сателлитная ДНК. ДНК-содержащие вирусы и фаги. Банки нуклеотидных последовательностей, программа «Геном человека». Геномная дактилоскопия. Генетически детерминируемые болезни. Подвижные генетические элементы и эволюция геномов. Структура хроматина. Полиморфизм ДНК.

2. Обмен нуклеиновых кислот. Экспрессия генов.

Репликация различных ДНК и её регуляция. Теломерные последовательности ДНК. Повреждения и репарация ДНК. Центральная догма молекулярной биологии.

Структура транскриптонов и регуляция транскрипции у про- и эукариот. Процессинг РНК. Сплайсинг и его виды. Рибозимы. Трансляция, её этапы и регуляция.

Обратная транскрипция. РНК-содержащие вирусы. Молекулярные основы канцерогенеза. Онкогены. Связь структуры и функ-

ции белков. Белковая инженерия. Внеклеточный синтез белков. Межмолекулярные взаимодействия и их роль в функционировании живых систем. Молекулярные основы эволюции, дифференцировки развития и старения. Молекулярные механизмы регуляции клеточного цикла. Программируемая клеточная гибель.

Таблица 2 V. Тематический план лекций

Темы лекций	Содержание лекций (основные вопросы)				
Введение.	1.Теоретические и практические задачи со-				
Химия нуклеи-	временной молекулярной биологии.				
новых кислот.	2.Нуклеотиды ДНК и РНК. Определение				
	нуклеотидной последовательности нуклеи-				
	новых кислот.				
	3.Структура геномов про- и эукариот. Уни-				
	кальные и повторяющиеся гены. Сателлитная				
	ДНК.				
Уровни струк-	1.Вторичная структура ДНК. Принцип ком-				
турной органи-	плементарности и его реализация. Силы, ста-				
зации нуклеино-	билизирующие вторичную структуру ДНК				
вых кислот.	(уотсон-криковские взаимодействия, стекинг				
	взаимодействия). Полиморфизм ДНК.				
	2.Структура хроматина.				
	3.Типы РНК, их структурная организация и				
	биологическая функция. Генетический код и				
	его свойства.				
Биосинтез нук-	1. Репликация ДНК. Её принципы и меха-				
леиновых ки-	низм. Виды репликации. Ферментативная				
слот.	система синтеза ДНК.				
	2. Центральная догма молекулярной биоло-				
	гии.				
	3. Транскрипция (на примере синтеза мРНК).				
	Структура транскриптонов и регуляция				
	транскрипции у про- и эукариот. Процессинг				
	РНК. Сплайсинг. Рибозимы.				

Биосинтез бел-	1. Основные пути и механизмы природного		
ков.	синтеза белков.		
	2. Матричный синтез белков. Основные эта-		
	пы трансляции.		
	3. Регуляция биосинтеза белков. Посттранс-		
	ляционная модификация.		

Таблица 3 *VI. Практикум*

Темы	Содержание
модулей	
Семинар 1.	1. Роль нуклеиновых кислот в формирова-
Нуклеиновые ки-	нии и свойствах живой материи.
слоты. Состав,	
строение и свой-	2. Химический состав нуклеиновых кислот.
ства ДНК. Синтез	Пиримидиновые и пуриновые основания.
ДНК.	Углеводные компоненты.
(2часа)	3. Нуклеозиды. Нуклеотиды. Мононуклео-
	тиды как структурные элементы нуклеино-
	вых кислот.
	4. Два вида нуклеиновых кислот: ДНК и
	РНК. Различия между ДНК и РНК по соста-
	ву, молекулярной массе, локализации в
	клетке и функциям.
	5. Нуклеотидный состав ДНК; правила Е.
	Чаргаффа. Первичная структура нуклеино-
	вых кислот. Структура геномов про- и эука-
	риот. Уникальные и повторяющиеся гены.
	Сателлитная ДНК.

	6. Вторичная структура, двойная спираль
	ДНК. Комплементарные и межплоскостные
	взаимодействия нуклеиновых оснований.
	Полиморфизм ДНК. Третичная структура
	ДНК. Структура хроматина.
	7. Репликация ДНК. Обратная транскрипция
	(синтез комплементарных ДНК). Создание
	искусственных программ. Генетическая ин-
	женерия.
	•
	8. Рекомбинация ДНК.
	, ,,
Семинар 2.	1. Основные типы рибонуклеиновых кислот,
Рибонуклеиновые	их сравнительная характеристика по моле-
кислоты, класси-	кулярной массе, нуклеотидному составу,
фикация, строе-	локализации и функциям.
ние и свойства.	2. Информационные РНК. Первичная струк-
Синтез РНК и	тура. Функция и-РНК. Генетический код и
белков.	его свойства.
(2часа)	3. Транспортные РНК. Особенность пер-
, , ,	вичной структуры. Вторичная структура
	т-РНК. Биологическая функция т-РНК.
	4. Рибосомальные РНК. Виды р-РНК и их
	функции. РНК-содержащие вирусы.
	5. Транскрипция. Структура транскрипто-
	нов и регуляция транскрипции у про- и эу-
	кариот. Процессинг РНК. Сплайсинг. Рибо-
	зимы.
	6. Трансляция. Этапы трансляции.
	о. гранслиции. Этаны гранслиции.

VII. Глоссарий

- **Аденозинтрифосфат (ATP).** Рибонуклеозид-5-трифосфат, участвующий в энергетическом цикле клетки в качестве донора фосфатной группы.
- **att-сайты.** Участки фаговой и бактериальной хромосом, рекомбинация между которыми приводит к интеграции или исключению фага.
- **Активация аминокислоты.** ATP-зависимое ферментативное образование эфирной связи между карбоксильной группой аминокислоты и 3'-гидроксильной группой соответствующей ей тРНК.
- **Аминоацил-тРНК –синтетаза**. Фермент, катализирующий образование аминоацил-тРНК за счет энергии АТР.
- Аминоацил-тРНК. Эфир аминокислоты и тРНК.
- **Антикодон.** Специфическая последовательность из трех нуклеотидов в тРНК, комплементарная кодону для аминокислоты в мРНК.
- **АР-эндонуклеазы.** Ферменты, разрезающие ДНК в апуриновых или апиримидиновых участках с образованием 5'-концов.
- **Аттенуатор.** Терминаторная последовательность, на которой происходит аттенуация.
- **Аттенуация.** Регуляция транскрипции на уровне терминации, осуществляемая при экспрессии некоторых бактериальных оперонов.
- Бактериофаги (фаги). Вирусы, инфицирующие бактерии.
- **Белок-репрессор.** Регуляторный белок, связывающийся с оператором на ДНК или с РНК, предотвращающий, соответственно, транскрипцию или трансляцию.
- **Бессмысленная мутация.** Изменение в ДНК, приводящее к замене смыслового кодона, соответствующего какой-либо аминокислоте, на бессмысленный (терминирующий).
- **Бессмысленный кодон.** Один из трех триплетов: UAG, UAA, UGA, вызывающих терминацию синтеза белка (UAG известен, как amber-кодон, UAA как ochre-кодон, UGA как

- opal-кодон).
- **Библиотека генов.** Неупорядоченный набор фрагментов ДНК, содержащий всю генетическую информацию данного вида.
- **Блок Прибнова.** Каноническая последовательность ТАТААТ, находящаяся на расстоянии около 10 пар нуклеотидов перед стартовой точкой бактериальных генов. Представляет собой часть промотора, отвечающую за инициацию транскрипции со стартовой точки под действием РНК-полимеразы.
- **Ведущая цепь.** Цепь ДНК, синтезирующаяся непрерывно в $5' \rightarrow 3'$ -направлении.
- **Вектор.** Автономно реплицирующаяся в клетке-хозяине молекула ДНК, к которой можно присоединить фрагмент ДНК, чтобы обеспечить его репликацию; например, плазмида или ДНК умеренного фага.
- Вирион . Вирусная частица.
- **Вирус.** Самореплицирующийся инфекционный комплекс нуклеиновой кислоты и белка, содержащий ДНК- или РНК-хромосому и требующий для своей репликации интактную клетку-хозяина.
- **Водородная связь.** Сравнительно слабое электростатическое притяжение между электроотрицательным атомом и атомом водорода, ковалентно связанным с другим электроотрицательным атомом.
- **Вставочная мутация.** Мутация, вызванная вставкой дополнительного основания между двумя последовательно расположенными основаниями ДНК.
- **Вырожденный код.** Код, в котором один элемент на каком-то одном языке кодируется несколькими элементами на другом языке.
- **Ген.** Участок хромосомы, который кодирует одну или несколько полипептидных цепей или молекулу РНК.
- **Генетическая информация.** Наследственная информация, содержащаяся в нуклеотидной последовательности хромосомной ДНК или РНК.
- **Генетический код.** Набор кодовых слов (триплетов) в ДНК кодирующих аминокислоты белков.

- Генотип. Совокупность генов организма.
- **Гетерохроматин.** Генетически неактивные участки хромосом; постоянно находятся в конденсированном состоянии.
- **Гибридизация.** Процесс взаимодействия комплементарных цепей РНК и ДНК, образующих двухцепочечный гибрид РНК ДНК.
- **Гипотеза качаний.** Объясняет способность тРНК узнавать более чем один кодон, благодаря неканоническому (отличному от G-C, A-T) спариванию первого основания антикодона тРНК с третьим основанием кодона.
- **Гираза.** Топоизомераза типа II из Е. coli. Фермент способен вносить отрицательные супервитки в ДНК.
- **Гистоны.** Эволюционно консервативные белки эукариот, связывающие ДНК; участвуют в формировании нуклеосомы, основной структурной единицы хроматина.
- **Горячая точка.** Участок ДНК, в котором частота возникновения мутаций (или рекомбинаций) очень велика.
- **G1.** Период клеточного цикла между последним митозом и началом репликации ДНК.
- **G2.** Период клеточного цикла после окончания репликации ДНК и до начала следующего митоза.
- **D-петля.** Область внутри митохондриальной ДНК, в которой небольшой участок РНК-праймера взаимодействует с одной из цепей ДНК, вытесняя исходную комплементарную цепь. Этот же термин используется при описании события, катализируемого RecA-белком, которое заключается в замене одной цепи в дуплексной ДНК другой одноцепочечной ДНК, захваченной извне.
- **Двойная спираль**. Спираль, образованная двумя комплементарными антипараллельными цепями ДНК или РНК.
- **Двунаправленная репликация.** Репликация, при которой две репликационные вилки движутся в противоположных направлениях от общего старта oriC.
- **Дезоксирибонуклеотиды.** Нуклеотиды, содержащие в качестве пентозного компонента 2'-дезокси-D-рибозу.

- **Делеционная мутация.** Мутация, возникшая в результате утраты одного или большего числа нуклеотидов из гена.
- **Денатурация ДНК или РНК.** Переход этих молекул из двухцепочечной формы в одноцепочечную; разделение цепей наиболее часто достигается нагреванием.
- **ДНК-лигаза.** Фермент, катализирующий образование фосфодиэфирной связи между З'-концом одного фрагмента ДНК и 5'концом другого в условиях, когда оба фрагмента комплементарно спарены с цепью-матрицей.
- **ДНК-полимераза.** Фермент, который катализирует протекающую в присутствии матрицы реакцию синтеза ДНК из предшественников дезоксирибонуклеозид-5'-трифосфатов.
- **ДНК-репликазная система**. Полный набор ферментов и специализированных белков, необходимых для репликации ДНК.
- **Закрытая рамка считывания.** Содержит кодоны преждевременной терминации, не позволяющие иРНК транслироваться в белок.
- **Изоакцепторные тРНК.** Молекулы тРНК, соответствующие одной и той же аминокислоте.
- **Инвертированные повторы.** Две копии одной и той же последовательности в составе одной молекулы ДНК, находящиеся в противоположной ориентации. Прилежащие друг к другу инвертированные повторы образуют палиндром.
- **Индуктор.** Небольшая молекула, включающая транскрипцию гена за счет связывания с регуляторным белком.
- **Индукция.** Свойство клеток (бактериальных или дрожжевых) синтезировать определенные ферменты только при наличии соответствующих субстратов; применительно к экспрессии генов термин означает включение транскрипции в результате взаимодействия индуктора с регуляторным белком.
- **Инициирующий кодон.** Триплет AUG, кодирующий первую аминокислоту в полипептидной цепи, которой у прокариот является N-формилметионин, а у эукариот метионин.
- **Интеграция.** Внедрение вирусной или иной последовательности ДНК в геном клетки-хозяина, приводящее к ковалент-

- ному соединению с хозяйской последовательностью.
- **Интрон.** Вставочная последовательность в гене; она транскрибируется, но вырезается до процесса трансляции.
- **Катаболическая репрессия.** Ослабление экспрессии многих бактериальных оперонов, происходящее при добавлении глюкозы; вызывается уменьшением уровня циклического AMP в клетке и инактивацией вследствие этого регуляторного CAP-белка.
- **Катящееся кольцо.** Способ репликации, при котором репликационная вилка совершает множество оборотов на циркулярной матрице; синтезирующаяся в каждом цикле цепь ДНК вытесняет цепь, синтезированную в предыдущем цикле, образуя хвост, состоящий из линейного набора последовательностей, комплементарных одноцепочечному матричному кольцу.
- **кДНК** (комплементарная ДНК). ДНКсинтезируемая обычно с помощью обратной транскриптазы и комплементарная данной мРНК; используется для клонирования ДНК.
- **Кодирующая цепь.** Цепь ДНК, последовательность которой идентична иРНК.
- **Комплементарная цепь.** Одна из цепей ДНК, используемая в качестве матрицы для синтеза РНК и комплементарная ей.
- **Координированная регуляция.** Означает общий контроль экспрессии группы генов.
- **Корепрессор.** Малая молекула, которая включает механизм репрессии транскрипции, связываясь с регуляторным белком.
- **Кроссинговер.** Обмен материалом между гомологичными хромосомами, происходящий в процессе мейоза, и лежащий в основе генетической рекомбинации.
- **Кэп.** Структура на 5'-конце эукариотических иРНК; образуется после транскрипции за счет присоединения 5'-конца гуанинового нуклеотида к 5'-концевому основанию иРНК. Эта структура может быть метилирована, по крайней мере, по той молекуле гуанина, которая присоединилась. «Кэп» имеет следующее строение -7MeG5'ppp5'Np...
- Лидер. Нетранслируемая последовательность, находящаяся на

- 5'-конце иРНК и предшествующая инициирующему кодону.
- **Линкер.** Синтетический, короткий двухцепочечный олигонуклеотид, содержащий сайты узнавания для ряда рестрикционных эндонуклеаз; может быть присоединен к концам фрагмента ДНК, полученного с помощью какой-либо другой рестриктирующей эндонуклеазы, в процессе реконструирования рекомбинантной ДНК.
- **Линкерная ДНК.** ДНК нуклеосомы, выходящая за пределы кор-частицы длиной 146 пар нуклеотидов (т.е. за пределы минимальной нуклеосомы).
- «Липкие» концы. Самокомплементарные одноцепочечные участки ДНК, выступающие на противоположных концах двухцепочечной молекулы; возникают в результате ступенчатых разрезов в двухцепочечных молекулах ДНК.
- Матрица. Макромолекулярный шаблон для синтеза информационной макромолекулы. Матричная РНК (мРНК или иРНК). Класс молекул РНК, каждая из которых комплементарна одной цепи клеточной ДНК и служит для переноса генетической информации от хромосомы к рибосомам.
- **Митоз**. Репликация хромосом в соматических клетках эукариот. **Молчащие мутации.** Не изменяют продукта, кодируемого геном.
- Моноцистронные иРНК. Кодируют один белок.
- **Мутаген.** Химический агент, способный вызывать изменения в гене, т.е. мутацию.
- **Мутации сдвига рамки.** Делеции или вставки, размеры которых не кратны трем основаниям, приводят к изменению рамки считывания при трансляции триплетов в белок.
- Мутация. Наследуемое изменение в хромосоме.
- **мяРНК** (малая ядерная РНК). Одна из многих маленьких РНК, содержащихся в ядре; принимает участие в сплайсинге.
- **Нонсенс-кодон.** Кодон, который не кодирует ни одну из аминокислот, а указывает место окончания синтеза полипептидной цепи.

- **Нуклеиновые кислоты.** Природные полинуклеотиды, в которых нуклеотидные остатки соединены между собой в определенной последовательности фосфодиэфирными связями.
- **Нуклеозид.** Соединение, состоящее из пуринового или пиримидинового основания, ковалентно связанного с пентозой.
- **Нуклеоид.** Ядерная зона в прокариотической клетке; она содержит хромосому, но не окружена мембраной.
- **Нуклеосома.** Основная структурная единица хроматина, состоящая из ~200 нуклеотидных пар ДНК и октамера гистоновых белков.
- **Нуклеотид**. Нуклеозид, фосфорилированный по одной из гидроксильных групп пентозы.
- **Обратная транскриптаза**. Синтезируемая ретровирусами РНКзависимая ДНК-полимераза, способная катализировать синтез ДНК, комплементарной РНК.
- **Обратная транскрипция.** Синтез ДНК на матрице РНК; осуществляется ферментом обратной транскриптазой.
- **Однонаправленная репликация.** Единственная репликационная вилка движется от определенной точки, называемой местом начала репликации.
- **Оператор.** Область ДНК, которая взаимодействует с белкомрепрессором, благодаря чему регулируется экспрессия гена или группы генов.
- **Оперон.** Единица генетической экспрессии, состоящая из одного или нескольких связанных между собой генов, а также из промотора и оператора, которые регулируют их транскрипцию.
- **Отстающая цепь.** Должна удлиняться в $3' \rightarrow 5'$ -направлении, поэтому синтезируется прерывисто в виде коротких фрагментов ($5' \rightarrow 3'$), которые затем ковалентно соединяются.
- **Охра-кодон.** Триплет UAA, один из трех бессмысленных кодонов, вызывающих терминацию синтеза белка.
- **Охра-мутация.** Изменение в ДНК, приводящее к появлению UAA-кодона в сайте, первоначально занятом другим кодоном.
- Охра-супрессор. Ген, кодирующий мутантную тРНК, способ-

- ную узнавать UAA-кодон, как смысловой, благодаря чему синтез белка может быть продолжен.
- **Палиндром.** Последовательность ДНК, которая остается неизменной, если на одной из цепей ДНК ее читать слева направо, а на другой справа налево; состоит из прилежащих друг к другу инвертированных поворотов.
- **Первичный транскрипт.** Первоначально синтезированная немодифицированная молекула РНК, соответствующая транскрипционной единице.
- **Перемещающийся элемент (транспозон).** Фрагмент ДНК, который может менять свое положение в геноме.
- Плавление ДНК. Денатурация ДНК.
- **Плазмида.** Внехромосомная независимо реплицирующаяся небольшая кольцевая молекула ДНК.
- **Полиаденилирование.** Присоединение последовательности полиадениловой кислоты к 3'-концу эукариотической РНК после завершения ее синтеза.
- **Полуконсервативная репликация.** Осуществляется за счет разделения цепей исходной двухцепочечной молекулы и последующего использования каждой из них в качестве матрицы для синтеза комплементарных цепей.
- Последовательность Шайна-Дальгарно. Вся или только часть полипуриновой последовательности AGGAGG, находящейся на 5'-конце иРНК непосредственно перед инициирующим AUG-кодоном, комплементарная последовательности на 3'-конце 16S-рРНК; принимает участие в связывании рибосомы с иРНК.
- **Праймер.** Короткая последовательность (часто это РНК), комплементарно взаимодействующая с одной из цепей ДНК; образует свободный 3'-ОН-конец, используя который ДНК-полимераза начинает синтез дезоксирибонуклеотидной цепи.
- **Праймосома.** Комплекс белков, принимающих участие в инициировании синтеза фрагментов Оказаки в процессе прерывистой репликации ДНК; праймосома может перемещаться вдоль ДНК, участвуя в последующих актах инициации.

- **Промотор.** Участок ДНК, с которым может связываться РНК-полимераза, инициируя тем самым транскрипцию.
- **Профаг.** Фаговый геном, интегрированный в бактериальную хромосому.
- **Рамка считывания.** Один из трех возможных способов считывания нуклеотидной последовательности в виде последовательного ряда триплетов.
- **Реверсия мутации.** Замена в ДНК, которая или исправляет первоначальное повреждение (истинная реверсия) или компенсирует его (в результате вторичной мутации в данном гене).
- **Регуляторный ген.** Ген, продукт которого принимает участие в регуляции экспрессии другого гена, например ген, кодирующий белок-репрессор.
- **Рекомбинантная** ДНК. ДНК, образованная в результате соединения генов в новой комбинации.
- **Рекомбинационная репарация.** Способ залечивания бреши в одной из цепей двухцепочечной ДНК за счет замещения участком гомологичной цепи из другой молекулы.
- **Рекомбинация.** Соединение генов, группы генов или частей генов в результате биологического процесса или в ходе лабораторного манипулирования, приводящее к новым комбинациям генов.
- **Ренатурация.** Реассоциация денатурированных комплементарных цепей ДНК с образованием двухцепочечной молекулы.
- **Рентгеноструктурный анализ (РСА).** Использование метода дифракции рентгеновских лучей на кристаллах исследуемого соединения для определения его трехмерной структуры.
- **Репликационная вилка.** Точка, в которой цепи родительской двухцепочечной ДНК расходятся для того, чтобы могла произойти репликация.
- **Репликация.** Синтез дочерней молекулы двухцепочечной ДНК, идентичной родительской двухцепочечной ДНК.
- **Репликон.** Единица генома, способная к автономной репликации ДНК; содержит точку инициации репликации.

- **Репрессибельный фермент.** Фермент, синтез которого ингибируется в том случае, если продукт катализируемой им реакции легко доступен бактериальной клетке.
- **Репрессия.** Ингибирование транскрипции (или трансляции) за счет связывания белка-репрессора со специфическим сайтом на ДНК(или иРНК).
- **Репрессор.** Белок, который связывается с регуляторной последовательностью (оператором) гена и блокирует его транскрипцию.
- Рестриктирующие эндонуклеазы. Эндодезоксирибонуклеазы, узнающие специфическую нуклеотидную последовательность и вызывающие расщепление обеих цепей ДНК в сайтах, которые определяются нуклеотидными последовательностями, обладающими симметрией второго порядка относительно центра. Эти ферменты являются важным инструментом генетической инженерии.
- **Ретровирус.** РНК-содержащий вирус, в состав которого входит обратная транскриптаза, т.е. РНК-зависимая ДНК-полимераза.
- **Рилизинг-факторы (факторы терминации).** Входящие в состав цитозоля факторы белковой природы, необходимые для высвобождения готовой полипептидной цепи из рибосомы.
- **R-петля.** Структура, образующаяся при гибридизации РНК с комплементарной цепью двухцепочечной ДНК; при этом происходит вытеснение исходной цепи ДНК в виде петли, расположенной в области гибридизации.
- **р-фактор.** Белок, помогающий РНК-полимеразе прекращать транскрипцию в определенных (р -зависимых) сайтах. **Сайт-специфическая рекомбинация.** Происходит между дву-
- Сайт-специфическая рекомбинация. Происходит между двумя определенными (не обязательно гомологичными) последовательностями, например, наблюдается при интеграции и исключении фага или при разрешении коинтегратных структур в процессе транспозиции.
- **Сателлитная ДНК.** Высокоповторяющиеся нетранслируемые участки ДНК в эукариотических клетках.

- Сдвиг рамки. Мутация, которая обусловлена вставкой или потерей одной или нескольких пар нуклеотидов; приводит к смещению рамки считывания кодонов при биосинтезе белка, в результате чего образующийся белок, начиная с кодона, подвергшегося изменению, имеет искаженную аминокислотную последовательность.
- **Сплайсинг.** Процесс удаления интронов и объединения экзонов в иРНК.
- **Стартовая точка (инициирующий сайт).** Обозначает участок ДНК, соответствующий первому основанию, включающемуся в РНК.
- Стебель. Двухцепочечный участок шпильки, образованный спаренными основаниями.
- Структурный ген. Ген, кодирующий белки и РНК.
- ТАТА-последовательность (блок Хогнесса). А-Т-богатая семичленная последовательность, находящаяся на расстоянии около 25 пар нуклеотидов перед стартовой точкой каждой транскрипционной единицы, транскрибируемой РНК-полимеразой ІІ; вероятно, необходима для такого расположения фермента, при котором он может осуществлять правильную инициацию.
- **Температура плавления (Тпл).** Соответствует среднему значению температурного интервала, в пределах которого происходит плавление ДНК.
- **Терминирующая последовательность**. Последовательность ДНК, которая находится на конце транскрипционной единицы и служит сигналом окончания транскрипции.
- **Терминирующие кодоны.** Три кодона UAA, UAG и UGA, которые служат сигналами окончания синтеза полипептидной пепи.
- **Топоизомеразы.** Ферменты, способные осуществлять положительное или отрицательное сверхскручивание колец двухцепочечной ДНК.
- **Точка начала репликации (огі).** Последовательность ДНК, в которой происходит инициация репликации.
- Трансверсия. Мутация, в результате которой пурин замещается

- пиримидином, или же наоборот.
- **Трансдукция.** Перенос генетического материала из одной клетки в другую с помощью вирусного вектора.
- **Транскрипционный контроль.** Регуляция белкового синтеза при помощи регуляции образования мРНК.
- **Транскрипция.** Ферментативный процесс, при котором генетическая информация, содержащаяся в одной цепи ДНК, используется для синтеза комплементарной нуклеотидной последовательности в цепи мРНК.
- **Транслоказа.** Фермент, вызывающий какое-либо движение, например перемещение рибосомы вдоль мРНК.
- **Трансляционный контроль.** Регуляция синтеза белка за счет изменения скорости его трансляции в рибосоме.
- **Трансляция.** Процесс, при котором генетическая информация, содержащаяся в молекуле мРНК, направляет синтез соответствующей аминокислотной последовательности в белке.
- **Транспозаза.** Фермент, участвующий в интеграции транспозона в новый сайт.
- **Транспозиция.** Перемещение гена или группы генов из одного места генома в другое.
- **Транспозон.** Последовательность ДНК, способная реплицироваться и внедрять одну из копий в новое место генома.
- **Транспортная РНК (тРНК).** Класс молекул РНК (мол. масса 25000-30000), каждая из которых на первом этапе белкового синтеза ковалентно соединяется со специфической аминокислотой.
- Усилители транскрипции (enhancer). Участки ДНК, усиливающие транскрипцию с ряда эукариотических промоторов, находящихся по отношению к ним в цис-положении. Эти элементы оказывают свое действие независимо от того, с какой стороны промотора они располагаются.
- Факторы инициации (IF). Белки, которые специфически связываются с малой субчастицей рибосомы на стадии инициации белкового синтеза.
- Факторы элонгации (EF). Белки, циклично ассоциирующие с рибосомой в соответствии с включением каждой новой ами-

- нокислоты в полипептидную цепь.
- **Фрагменты Оказаки.** Короткие фрагменты ДНК длиной 1000-2000 оснований; образуются в результате прерывистой репликации; впоследствии ковалентно соединяются в непрерывную цепь.
- **Химерная** ДНК. Рекомбинантная ДНК, содержащая гены из двух разных видов организмов.
- **Хроматин.** Нитевидный комплекс ДНК, гистонов и других белков, составляющий основу эукариотических хромосом.
- **Хромосома.**Одна большая молекула ДНК, содержащая ряд генов и выполняющая функцию хранения и передачи генетической информации.
- **Центральная догма.** Основополагающий принцип биохимической генетики, согласно которому генетическая информация передается от ДНК к РНК и далее к белкам.
- **Цистрон.** Генетическая единица, выявляемая путем комплементационного теста; эквивалентна гену и означает единицу ДНК, кодирующую белок.
- **Цитоплазматическое наследование.** Характерно для признаков, определяемых митохондриальными генами, и генами, локализованными в хлоропластах (или в любых других органеллах).
- **Шпилька.** Представляет собой двухцепочечную область, образующуюся за счет спаривания оснований между соседними (инвертированными) комплементарными последовательностями в одноцепочечной РНК или ДНК.
- Экзон. Участок эукариотического гена, транскрипт которого оказывается в зрелой мРНК; он кодирует определенный участок полипептидной цепи белка.
- Экзонуклеаза. Фермент, гидролизующий только концевую фосфодиэфирную связь нуклеиновой кислоты.
- Эндонуклеаза. Фермент, способный гидролизовать внутренние фосфодиэфирные связи в нуклеиновых кислотах.
- Эндоплазматический ретикулум. Обширная система двойных мембран в цитоплазме эукариотических клеток; она окружает секреторные каналы и часто усеяна рибосомами.

- **Эукариоты.** Организмы, клетки которых содержат окруженное мембраной ядро с множественными хромосомами и внутриклеточные органеллы.
- **Ядро.** Органелла эукариотической клетки, окруженная мембраной и содержащая хромосомы.

VIII. *Рекомендуемая литература* Основная литература

- 1. Коничев, А.С., Севастьянова, Г.А. Молекулярная биология/ А.С. Коничев, Г.А. Севастьянова. М.: Академия, 2005.-400с.
- 2. Бокуть, С.Б. Молекулярная биология: молекулярные механизмы хранения, воспроизведения и реализации генетической информации / С.Б. Бокуть, Н.В. Герасимович, А.А. Милютин.- Мн.: Высшая шк., 2005.- 463с.
- 3. Белясова, Н.А. Биохимия и молекулярная биология / Н.А. Белясова. Мн.: Книжный дом, 2004. 415c.

Дополнительная литература

- 4. Степанов, В.М. Молекулярная биология. Структура и функции белков / В.М. Степанов. М.: Высшая шк., 1996. 335 с.
- 5. Структура и функция нуклеиновых кислот/под ред. А.С. Спирина.— М.: Высшая шк., 1990. 303 с.
- 6. Спирин, А.С. Структура рибосом и биосинтез белка / А.С. Спирин. М.: Высшая шк., 1986.
- 7. Албертс, Б. Молекулярная биология клетки: в 3 т. / Б. Албертс, Д. Брей, Дж. Льюис– М.: Мир, 1994.
- 8. Филлипович Ю.Б. Биохимические основы жизнедеятельности человека / Ю.Б. Филлипович, А.С. Коничев., Г.А. Севастьянова, Н.М. Кутузова М.: Владос, 2005.-407с.
- 9. Основы биохимии / под ред. А.А. Анисимова.— М.: Высшая шк., 1986. 551 с.
- 10. Овчинников, Ю.А. Биоорганическая химия / Ю.А. Овчинников.- М.: Просвещение, 1987.- 815с.
- 11. Биохимия / Под ред. акад. Е.С. Северина.- М.: ГЭОТАР-Медиа, 2008.- 768c.
- 12. Современное естествознание. В 10т. Т.8: молекулярные основы биологических процессов: энциклопедия / Гл. ред. В.Н. Сойфер; ред. т. Ю.А. Владимиров. М.: ИД Магистр Пресс, 2000.- 408 с.

- 13. Кольман, Я. Наглядная биохимия / Я. Кольман, К.-Г. Рём. – М.: Мир, 2000. - 469c.
- 14. Ленинджер, А. Основы биохимии: в 3 т. / А. Ленинджер. М.: Мир, 1985.
- 15. Комов, В.П. Биохимия / В.П. Комов, В.Н.Шведова. М.: Дрофа, 2004.-639c.
- 16. Страйер, Л. Биохимия: в 3 т. / Л .Страйер. М.: Мир, 1985.
- 17. Коничев, А.С. Биохимия и молекулярная биология: словарь терминов / А.С. Коничев, Г.А. Севастьянова.- М.: Дрофа, 2008.-359с.

Таблица 5

Методические указания по самостоятельной работе студентов

Темы мо-	Основные вопросы	Номера	Часы	Формы
дулей		учебных и		Отчет-
		методиче-		ности
		ских посо-		
		бий		
Тема 1:	Методы молекулярной	1 .c.10-19,	8	1. Опрос
Введение.	биологии. Важнейшие	73-99.		на заня-
Химия	достижения. Роль нук-	2. c.68-105.		тиях.
нуклеи-	леиновых кислот в	3. c. 10-22.		2. Зачет.
новых	формировании и свой-			
кислот	ствах живой материи.			
	Химический состав			
	нуклеиновых кислот			
	(пиримидиновые и пу-			
	риновые основания,			
	углеводные компонен-			
	ты).			
	Понятие о нуклеозидах			
	и нуклеотидах. Моно-			
	нуклеотиды - струк-			
	турные элементы нук-			
	леиновых кислот. Раз-			
	личия между ДНК и			
	РНК. Нуклеотидный			
	состав ДНК, правила Е.			
	Чаргаффа.			
Тема 2:	Методы определения	1.c.115-	30	1. Опрос
Струк-	нуклеотидной после-	203, 351-		на заня-
турная	довательности ДНК и	392.		тиях.
организа-	РНК, химический син-	2 .c.46-		2. Зачет.
ция нук-	тез генов. Основы ге-	106,392-		

				, ,
леиновых	нетической инженерии:	435.		
кислот и	рестрикционный ана-	3 .c. 22-63,		
её прак-	лиз, клонирование,	331-378.		
тическое	гибридизация. Созда-			
использо-	ние искусственных ге-			
вание.	нетических программ.			
	Рекомбинантные ДНК.			
	Гомеозисные гены. Не-			
	ядерные геномы. ДНК			
	митохондрий и хлоро-			
	пластов. ДНК-			
	содержащие вирусы и			
	фаги. Банки нуклео-			
	тидных последова-			
	тельностей, программа			
	«Геном человека». Ге-			
	номная дактилоскопия.			
	Генетически детерми-			
	нируемые болезни.			
	Подвижные генетиче-			
	ские элементы и эво-			
	люция геномов.			
Тема 3:	Различные ДНК и их	1 . c.173-	20	1. Опрос
Биогенез	репликация. Теломер-	175, 204-		на заня-
нуклеи-	ные последовательно-	295, 329-		тиях.
новых	сти ДНК. Повреждение	342.		2. Зачет.
кислот.	и репарация ДНК.	2 .c.108-		
	Транскрипция. Синтез	152,155-		
	тРНК и рРНК. Про-	197, 199-		
	цессинг и сплайсинг.	283, 285-		
	РНК-содержащие ви-	321.		
	русы. Молекулярные	3 .c. 22-78.		
	основы канцерогенеза.	11 .c. 708-		
	Онкогены.	734.		
l	l .			

Тема 4: Внутри- клеточ- ный син- тез бел- ков и его регуляция	Межмолекулярные взаимодействия и их роль в функционировании живых систем. Молекулярные основы эволюции, дифференцировки развития и старения. Молекулярные механизмы регуляции клеточного цикла. Программируемая клеточная гибель.	1. c.343- 350. 2.c. 285- 321.	20	 Опрос на занятиях. Зачет.
Тема5: Внекле- точный синтез белков.	Связь структуры и функции белков. Белковая инженерия.	1. c.30-71, 379-392. 15.c. 507-508.	10	 Опрос на занятиях. Зачет.

Вопросы для подготовки к зачету

- 1. Методы молекулярной биологии и её важнейшие достижения.
- 2. Теоретические и практические задачи современной молекулярной биологии.
- 3. Химический состав нуклеиновых кислот: характеристика азотистых оснований и углеводов. Нуклеозиды и нуклеотиды.
- 4. Различие между ДНК и РНК по составу главных и минорных оснований, характеру углевода, строению, молекулярной массе, локализации в клетке и функциям.
- 5. Нуклеотидный состав ДНК и РНК. Первичная структура. Правила Е. Чаргаффа.
- 6. Определение нуклеотидной последовательности ДНК и РНК.
 - 7. Вторичная структура ДНК и силы ее стабилизирующие.
 - 8. Полиморфизм двойной спирали ДНК.
- 9. Третичная структура ДНК. Структура хроматина ядра и хромосомы.
- 10. Структура геномов про- и эукариот. Уникальные и повторяющиеся гены. Саттелитная ДНК.
 - 11. РНК, их классификация и биологическая роль.
- 12. т-РНК: особенности первичной и вторичной структуры. Функциональное значение участков т-РНК. Третичная структура т-РНК.
- 13. Виды p-PHK и их функции. Роль p-PHK в структурной организации рибосом.
- 14. Характеристика и-РНК. Генетический код и его свойства. Особенности бактериальных и-РНК и и-РНК высших организмов.
- 15. Основы генетической инженерии: рестрикционный анализ, клонирование, гибридизация.
- 16. Задачи и перспективы генетической инженерии. Создание искусственных генетических программ. Схема молекулярного клонирования.

- 17. Программа «Геном человека». Геномная дактилоскопия. Генетически детерминируемые болезни.
 - 18. Репликация ДНК и её регуляция.
 - 19. Повреждение и репарация ДНК. Мутации.
 - 20. Генетическая рекомбинация.
- 21. Центральная догма молекулярной биологии и её реализация в живой природе.
- 22. Общее представление о биосинтезе РНК. Транскрипция у прокариот и её регуляция.
 - 23. Транскрипция у эукариот. Рибозимы. Регуляция.
 - 24. Обратная транскрипция. РНК-содержащие вирусы.
 - 25. Молекулярные основы канцерогенеза. Онкогены.
- 26. Матричная теория биосинтеза белков. Подготовительные процессы, предшествующие сборке полипептидной цепи в рибосоме.
 - 27. Трансляция. Этапы трансляции.
 - 28. Регуляция трансляции.
- 29. Связь структуры и функции белков. Фолдинг полипептидной цепи.
 - 30. Белковая инженерия. Внеклеточный синтез белков.
 - 31. Молекулярные основы эволюции, развития и старения.
 - 32. Программируемая клеточная гибель (апоптоз).

Учебное издание

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

Учебно-методический комплекс

Составитель – Ляшевская Надежда Викторовна

Подписано в печать 13.01.2009. Формат 60х84/16. Бумага офсетная. Печ. л. − 00. Заказ № 00. Тираж 00 экз.

РИО Горно-Алтайского госуниверситета, 649000, г. Горно-Алтайск, ул. Ленкина, д. 1

Отпечатано полиграфическим отделом Горно-Алтайского госуниверситета, 649000 г. Горно-Алтайск, ул. Ленкина, 1